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Abstract. We study the asymptotic behavior of the ratio of Pauli and Dirac electromagnetic nucleon
form factors, F2/F1, in time-like region, for different parametrizations built for the space-like region. We
investigate how fast the ratio F2/F1 approaches the asymptotic limits according to the Phragmèn-Lindelöf
theorem. We show that the QCD-inspired logarithmic behavior of this ratio results in very far asymptotics,
experimentally unachievable. This is also confirmed by the normal component of the nucleon polarization,
Py, in e+ + e− → N + N̄ (in collisions of unpolarized leptons), which is a very interesting observable,
with respect to this theorem. Finally we observe that the 1/Q parametrization of F2/F1 contradicts this
theorem.

PACS. 13.40.Gp Electromagnetic form factors – 13.88.+e Polarization in interactions and scattering –
13.40.-f Electromagnetic processes and properties

1 Introduction

The asymptotic behavior of the ratio R = F2/F1 of Pauli
and Dirac electromagnetic nucleon form factors (FFs) has
recently arised much interest from the experimental and
theoretical point of view. The last experimental data in
space-like (SL) region [1], about the momentum transfer
squared (q2 = −Q2) dependence1 of the ratio of the Sachs
electric and magnetic FFs, µGEp(Q

2)/GMp(Q
2) (µ is the

proton magnetic moment), which has been measured with
the polarization transfer method [2], changed the belief
that the QCD asymptotic behavior of F2/F1 ' 1/Q2 [3]
had already been reached for Q2 ≥ 2 GeV2 [4].

The recent data suggested a different behavior of

this ratio: F2/F1 ' 1/
√

Q2. Such dependence has been
justified in the framework of different theoretical ap-
proaches [5–12]. Another approach, confirming the QCD
1/Q2 behavior, discovered the importance of logarithmic
corrections, R ' ln2(Q2/Λ2)/Q2 [13], where Λ is the soft
scale related to the size of the nucleon. Note that the un-
expected behavior of the ratio µGEp(Q

2)/GMp(Q
2) was

predicted before the experiment took place, by a particu-
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1 In the following text we will use the notation t = q2 in TL
region.

lar VDM model [14] and also in the framework of a soliton
model [9].

The assumption of the analyticity of FFs [15] allows to
connect the nucleon FFs in SL and time-like (TL) regions
and to study the behavior of the ratio F2/F1 in TL re-
gion. The analyticity of FFs, which has been discussed for
example in ref. [16], allows to extend a parametrization
of FFs available in one kinematical region to the other
kinematical region.

Dispersion relation approaches [17–19], which are
based essentially on the analytical properties of nucleon
electromagnetic FFs, can be considered a powerful tool
for the description of the Q2 behavior of FFs in the entire
kinematical region.

The VDM model [14], after appropriate treatment of
the ρ contribution, can be also extrapolated from the SL
region to the TL region [20–22].

The quark-gluon string model [23] allowed firstly to
find the Q2-dependence of the electromagnetic FFs in TL
region, in a definite analytical form, which can be contin-
ued in the SL region.

One of the problems concerning FFs of pions and nu-
cleons is the large difference in the absolute values in
SL and TL regions. For example, at q2 = 18GeV2, the
largest value at which proton TL FFs have been mea-
sured [24], the corresponding values in TL and SL regions
differ by a factor of two. The analyticity of FFs allows to
apply the Phragmèn-Lindelöf theorem [25] which gives a
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rigorous prescription for the asymptotic behavior of ana-
lytical functions:

lim
t→−∞

F (SL)(t) = lim
t→∞

F (TL)(t). (1)

This means that, asymptotically, FFs have the following
constraints:

1. The imaginary part of FFs, in TL region, vanishes:
ImFi(t)→ 0, as t→∞;

2. The real part of FFs, in TL region, coincides with

the corresponding value in SL region: ReF
(TL)
i (t)[t→

∞] = F
(SL)
i (t)[t → −∞], because FFs are real func-

tions in SL region, due to the hermiticity of the corre-
sponding electromagnetic Hamiltonian.

The existing experimental data violate the Phragmèn-
Lindelöf theorem, even at t values as large as 18 GeV2 [26].
In order to test the two requirements stated above, the
knowledge of the differential cross-section for e+ + e− ↔
p + p̄ is not sufficient, and polarization phenomena have
to be studied, too. In this respect, T -odd polarization
observables, which are determined by ImF1F

∗
2 , are espe-

cially interesting. The simplest of these observables is the
Py-component of the proton polarization in e+ + e− →
p+ p̄ that in general does not vanish, even in collisions of
unpolarized leptons [27], or the asymmetry of leptons pro-
duced in p+ p̄→ e+ + e−, in the collision of unpolarized
antiprotons with a transversally polarized proton target
(or in the collision of transversally polarized antiprotons
on an unpolarized proton target) [28].

These observables are especially sensitive to different
possible parametrizations of the ratio R, suggested by
QCD and VDM models. Calculations have been done up
to t ' 40GeV2 and show that the Py-component remains
large in absolute value [29]. For example, QCD-inspired
parametrizations, which fit reasonably well the data in
the SL region, predict |Py| ' 35% up to t ' 40GeV2.
Such behavior has to be considered an indication that the
corresponding asymptotics are very far, in agreement with
the estimations of the quark-gluon string model [23] and
VDM approach [20].

Note another important property of QCD-inspired pre-
dictions for nucleon FFs: the corresponding ImFi(t), t ≥
4m2, i = 1, 2 (m is the nucleon mass), either vanish or have
a definite sign in the TL region. The previously quoted
parametrizations cannot apply in the whole TL region:
the asymptotic pQCD behavior follows F1(t) ' t−2 and
F2(t) ' t−3 at large t, according to the quark counting
rules [3]. The superconvergent conditions

∫ ∞

t0

ImFi(t)dt = 0 , i = 1, 2 (2)

have to be satisfied, where the lower limit corresponds to
t0 = 4m2

π, for isovector FFs, and t0 = 9m2
π for isoscalar

FFs, where mπ is the pion mass.
This implies that the nonzero QCD contribution to

eq. (2) has to be compensated by the corresponding non-
perturbative contribution of opposite sign. We can expect

that such contribution mainly arises from the special re-
gion of t: t0 ≤ t ≤ 4m2, which is unphysical for the process
e++e− ↔ p+p̄. The contribution from the different vector
mesons (with different masses) is expected to be very im-
portant here. We can say that the superconvergent condi-
tion (2) can be interpreted as a manifestation of the special
duality between pQCD, on the one hand, and the vector
meson contribution, on the other [30]. In principle such
duality is similar to the well-known Gilman-Bloom dual-
ity [31], concerning the electromagnetic properties of the
nucleons in SL region, when the deep inelastic electron nu-
cleon scattering is dual to the excitation of different nucle-
onic resonances in e−+N → e−+N∗. Also, one can men-
tion the duality in hadron physics relating the high-energy
behavior of the amplitudes of hadron-hadron scattering,
on the one hand, to the resonance physics, on the other.

Returning to the unphysical region, t0 ≤ t ≤ 4m2,
we recall, for completeness, that another interesting phys-
ical effect has to be taken into account here: specific N̄N
bound states, or even gluon states with JPC = 1−− quan-
tum numbers. And, due to the analyticity of FFs, these
effects should appear in the SL region of momentum trans-
fer, and should be correlated with the asymptotic behavior
of FFs.

Our main aim here is to discuss the asymptotic be-
havior of the existing parametrizations for F2/F1 in TL
region, from the point of view of the Phragmèn-Lindelöf
theorem. In particular, we will analyze the behavior of
Im(F2/F1), its convergence to zero and study in more de-
tail the asymptotic behavior of the Py-component of the
proton polarization in e+ + e− → p̄ + p, which contains
equivalent information. For completeness we will also con-
sider the behavior of the ratio R = |F2/F1|TL/|F2/F1|SL
which should converge asymptotically to unity, following
the Phragmèn-Lindelöf theorem.

In order to have a quantitative estimation of the cor-
responding value of the relevant variable, we will use the
following prescription, from ref. [20]: “A function f(z) is
said to be x% scaled when its value is x% of the asymptotic
value fas(z). The value at which this condition is met is
the solution of the equation |f(z)| = x|fas(z)|”. For the
cases considered here, this definition translates into the
following three equations2:

F = |Im(F2/F1)|/|Re(F2/F1)| = ∆, (3)

|Py| = ∆, (4)

R = |F2/F1|TL/|F2/F1|SL = 1 +∆, (5)

where we will take ∆ = 0.1 and ∆ = 0.05 in order to char-
acterize the deviations from the asymptotic predictions of
the Phragmèn-Lindelöf theorem.

For this aim, three different parametrizations, which
apply in the SL region, are considered:

F2

F1
=

a
√

(−t)
, a = 1.25 GeV from ref. [29], (6)

2 When fas(z) = 0, we take |f(z)| = x.
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F2

F1
= 0.17

ln2(−t/Λ2)

(−t) , Λ = 0.3 GeV from ref. [13],

(7)
and the VDM-inspired parametrization from ref. [21]:

F2

F1
=
F

(S)
2 + F

(V )
2

F
(S)
1 + F

(V )
1

, (8)

where

F
(S)
1 (Q2) =

g(Q2)

2

[

(1− βω − βφ) + βω
µ2
ω

µ2
ω +Q2

+βφ
µ2
φ

µ2
φ +Q2

]

,

F
(V )
1 (Q2) =

g(Q2)

2
[(1− βρ)

+βρ
µ2
ρ + 8Γρµπ/π

(µ2
ρ +Q2) + (4µ2

π +Q2)Γρα(Q2)/µπ

]

,

F
(S)
2 (Q2) =

g(Q2)

2
[(µp + µn − 1

−αφ)
µ2
ω

µ2
ω +Q2

+ αφ
µ2
φ

µ2
φ +Q2

]

,

F
(V )
2 (Q2) =

g(Q2)

2
[(µp − µn − 1)

×
µ2
ρ + 8Γρµπ/π

(µ2
ρ +Q2) + (4µ2

π +Q2)Γρα(Q2)/µπ

]

,

where g(Q2) =
1

(1 + γQ2)2
and

α(Q2) =
2

π

√

Q2 + 4µ2
π

Q2
ln

[

√

(Q2 + 4µ2
π) +

√

Q2

2µπ

]

,

with the standard values of the masses m = 0.939 GeV,
µρ = 0.77 GeV, µω = 0.78 GeV, µφ = 1.02 GeV,
µπ = 0.139 GeV and the ρ width Γρ = 0.112 GeV. µp
and µn are the magnetic moments of proton and neu-
tron, respectively, whereas γ = 0.25 GeV−2, βρ = 0.672,
βω = 1.102, βφ = 0.112, and αφ = −0.052 are parameters
fitted on the data.

This paper is organized as follows. In sect. 2 we analyze
the t-behavior of the imaginary part of the F2/F1 ratio
for different approaches, and estimate the corresponding
value of t for deviations of the order of ∆ from the ex-
pected asymptotic values. Then we give the expressions
for the polarization observables accessible through the re-
action e++e− → p+p in terms of the ratio F2/F1 and an-
alyze in particular the Py-component of the proton polar-
ization, which depends on the imaginary part of this ratio
(sect. 3). In sect. 4 we study how the ratioR approaches to
unity, that is the expected value for the asymptotic regime.

2 Imaginary part of the nucleon

electromagnetic form factors

Let us recall here the definition of the Phragmèn-Lindelöf
theorem, which will be the basis of the following discus-
sion. Following [25]: “ if f(z) → a as z → ∞ along a
straight line, and f(z) → b as z → ∞ along another
straight line, and f(z) is regular and bounded in the angle
between, then a = b and f(z)→ a uniformly in the angle”.
For the problem considered here, we identify the variable
z with the momentum transfer squared t. So one of these
straight lines can be chosen along the x-axis, in the pos-
itive direction (in the complex z-plane), i.e., for t values
corresponding to the TL region, and the other line with
negative x direction, with t in the SL region. Assuming
the analyticity of FFs, Fi(t), i = 1, 2, in the upper part
of the z-plane, we satisfy the necessary conditions for the
application of the Phragmèn-Lindelöf theorem, for all nu-
cleon FFs, F1,2(t). More exactly, it holds also for the four

independent FFs F
(S)
1,2 (t) and F

(V )
1,2 (t), where the upper in-

dices (S) or (V ) correspond to isoscalar or isovector elec-
tromagnetic FFs of the nucleon. Note that the analytical
properties of Fi(t), i = 1, 2, should be discussed namely
for the isoscalar and the isovector FFs, and not for pro-
ton and neutron, because the unitarity conditions (which
allow to calculate the imaginary part of FFs) have the
simplest and most transparent form for the isotopic FFs.
More exactly, isoscalar (isovector) FFs are determined by
intermediate states with odd (even) number of pions.

So, finally, one can write the following four indepen-
dent relations:

lim
t→+∞

F
(S,V )
1,2 (t) = lim

t→−∞
F

(S,V )
1,2 (t) (9)

as a consequence of the Phragmèn-Lindelöf theorem.
This theorem has other applications in particle

physics, such as, for example, the well-known theorem of
Pomeranchuk [32], concerning the asymptotic behavior of
the total cross-sections for a+b and ā+b collisions (a and
b any hadrons): σT (ab) = σT (āb). However, to be rigor-
ous, the applicability of this theorem to FFs, which seems
evident, has not been proved up to now3.

Unfortunately, this theorem does not allow to indicate
the physical value of t, starting from which it is working
at some level of precision. For this aim one needs some
additional dynamical information.

In our considerations about nucleon electromagnetic
FFs, such information is contained in the parametrizations
of FFs. More precisely, we discuss the ratio F2/F1 for the
proton and use those parametrizations which work well
in the SL region, where the available precise experimental
data allow to constrain the necessary parameters. It is
possible to continue analytically such parametrizations to
the TL region, using the following prescription [29]:

ln(−t) = ln(t)− iπ , t > 0 . (10)

3 In ref. [33] one can read: “There is, a priori, no general

constraint to ensure that the limit of some observable, such as

a form factor, should be the same in every direction in the

complex plane”.
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Fig. 1. Isoscalar and isovector FFs in SL and TL regions. (a) and (b): F
(S)
1 and F

(S)
2 in SL region (dashed line) and in TL

region (solid line); (c) and (d): F
(V )
1 and F

(V )
2 in SL region (dashed line) and in TL region: real part (solid line), imaginary part

(dotted line) and absolute value (dash-dotted line) which overlaps almost everywhere with the real part.

Evidently, the choice of sign for the imaginary part4, in
eq. (10), results in strong physical consequences concern-
ing the calculations of any T -odd polarization observable
for e+ + e− ↔ N + N̄ .

Let us firstly discuss the t-behavior of Im(F2/F1) in TL
region, using the QCD-inspired and VDM parametriza-
tions. Following the Phragmèn-Lindelöf theorem, the ra-
tio F = |Im(F2/F1)|/|Re(F2/F1)| should converge to zero
as t → ∞. And the value of t, corresponding to the solu-
tion of the equation F = ∆, ∆¿ 1, characterizes how F
approaches to zero.

After analytical continuation in TL region, one can see
that parametrization (6) gives R→∞, because it reduces
in TL region to

F2

F1
= i

1.25 GeV√
t

, t > 0 [29]. (11)

Such parametrization definitely contradicts the
Phragmèn-Lindelöf theorem because both form fac-
tors cannot be real at the same time.

This situation is not changed, after a modification sug-
gested to normalize FFs at t = 0 [29]:

F2

F1
→

[

1

κ2
p

+
t

(1.25)2 GeV2

]−1/2

,

where κp is the proton anomalous magnetic moment.

4 Note that in ref. [28] another sign has been taken: ln(−t) =
ln(t) + iπ, whereas in ref. [34] the formula ln(−t) = ln(t)± iπ
has been applied for the analytical continuation from SL to TL
region.

Parametrization (7) results in the following formula for
the relative size of the imaginary to the real part F :

F =
2π ln(t/Λ2)

ln2(t/Λ2)− π2
, t > 0 , (12)

which implies F → 0, if t → ∞, but very slowly. Quanti-
tatively, the condition F = ∆ has two solutions:

x± = ln
t

Λ2
=

π

∆

(

1±
√

1 +∆2
)

. (13)

For the x+ solution, which should be considered as the
physical solution for the TL region, we obtain

√
t ' 1013 GeV , for ∆ = 0.1,

which represents a very large energy, not far from the
Planck scale,

√
t = 1019 GeV. This last value corresponds

to a deviation of 6.5% from the expected asymptotical
zero value.

In the model [14], the isoscalar FFs, F
(S)
1,2 , are real in all

the kinematical range. Only the isovector FFs, F
(V )
1,2 , have

non vanishing imaginary part, induced by the ρ-meson
contribution, which is, however, one order of magnitude
smaller than the real part. The individual FFs are shown
in fig. 1. A singularity appears in the TL region, for all

FFs, due to the dipole term and in F
(S)
1 , due to a com-

pensation of the ω and φ contributions.
Taking the parameters from ref. [14], one can find:

F =
19.36

[1 + 0.512 ln(
√
t/mπ)]2 − 12.3 ln(

√
t/mπ)− 23.5

(14)
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with a faster decreasing, proportional to [ln(
√
t/mπ)]

−2,
relatively to the previously considered parametrizations.
Such asymptotic behavior leads to ∆ = 0.1(0.05) for√
t = 1011(1015) GeV, again very far from the region ex-

perimentally accessible. Note that the contribution which
is linear in logarithm as well as the constant terms in the
denominator are important, as they are responsible for the
zero of Re(F2/F1) at ln(

√
t/mπ) ' 45, which results in a

number larger than the asymptotic value.
Recently, the model [14] has been modified with re-

spect to a common factor for all FFs [20,22]:

(1− γt)−2 → (1− γeiθt)−2,

where θ has been taken equal to 53◦ and γ = 0.25 GeV−2.
This term moves the corresponding singularity t = 1/γ
to t = 1/γeiθ ' 4e−iθ GeV2 from the physical region
of TL momentum transfer. Such factor does not mod-
ify polarization phenomena as it cancels out. However,
such substitution has some shortcomings as it violates
the Schwartz reflection symmetry, in the following rela-
tion: F ∗(z) = F (z∗), and does not satisfy the Phragmèn-
Lindelöf theorem, because this factor induces

ImF (t)/ReF (t) ' − tan 2θ ' 3.5,

i.e., a nonzero value in the asymptotic region.

3 Polarization observables and asymptotic

behavior of the T-odd observable Py

Let us analyze the polarization observables related to the
process e+ + e− → p + p̄ and their asymptotic behav-
ior for the considered parametrizations of F2/F1. As the
cos θ-dependence is not relevant for the following consider-
ations, for the numerical calculations we take θ = 45◦. The
cos θ-dependence is well known in the framework of one-
photon exchange [27], therefore, its measurement can be
useful to check the validity of this mechanism at large Q2.
It is straightforward to derive the expressions for the po-
larization observables in terms of F2/F1 following the for-
malism derived in ref. [27]. The reference system is taken
as follows: the z-axis along the direction of the colliding
electron, the y-axis normal to the scattering plane, defined
by the direction of the electron and of the outgoing proton,
and the x-axis to form a left-handed coordinate system.

In case of unpolarized beam and target, only a single-
spin polarization observable does not vanish, the compo-
nent of the polarization of the scattered proton which is
normal to the scattering plane, Py:

Py = −τ − 1√
τ

ImF2/F1

D
, (15)

where τ = t/(4m2) and

D =
3

2

∣

∣

∣

∣

1 +
F2

F1

∣

∣

∣

∣

2

+
1

2τ

∣

∣

∣

∣

1 + τ
F2

F1

∣

∣

∣

∣

2

=
1

2

[

3 + 8Re
F2

F1
+

1

τ
+ (τ + 3)

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

.

The double-spin coefficients, which do not vanish due to
parity and C conservations, are:

Axx =
1

2D

[

1 +
1

τ
+ 4Re

F2

F1
+ (1 + τ)

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (16)

Ayy =
1− τ

2τD

[

1− τ

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (17)

Axz =
1√
τD

[

1 + (1 + τ)Re
F2

F1
+ τ

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (18)

Azz =
1

2D

[

3− 1

τ
+ 4Re

F2

F1
+ (3− τ)

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (19)

and they depend on the real part and/or on the modulus
of F2/F1. The observable Py, which contains the imagi-
nary part of the FFs ratio, can bring information for the
comparison of SL and TL asymptotic behavior.

The following formula for Py, at τ À 1, holds for the
parametrization (6):

Py = −

(

1− 1

τ

)

a

m

3 +
1

τ
+

(

1 +
3

τ

)

a2

4m2

→

Py,as = −
a/m

3 + a2/(4m2)
' −0.387.

This parametrization results in nonvanishing (negative)
asymptotics Py, with large absolute value, in contradiction
with the Phragmèn-Lindelöf theorem. The behavior of Py
for 1/τ ¿ 1 can be approximated by

Py = Py,as

(

1− p

τ

)

, p = 1 +
3 + 4m2/a2

1 + 12m2/a2
= 1.67.

This implies that a 10%(5%) difference from the asymp-
totics appears at t = 58.8(117.6) GeV2.

For the logarithmic parametrization (7), the asymp-
totic behavior of Py is described by

Py → −0.19
ln(t/Λ2)√

τ
.

One can see that the absolute value decreases with t, and
one finds Py = −10%(−5)% at t ' 350(6000) GeV2, still
too large to be achieved by experiments.

Finally, the asymptotic behavior of the Py polarization
in the model [14,20] can be described by the following
formula:

Py →
3.5/
√
τ

[

1 + 0.51 ln(
√
t/mπ)

]2 →
13.5√

τ ln2(
√
t/mπ)

with a faster decreasing with t. Note that this polarization
is positive in TL region. Moreover, the constant term in
the denominator is important at large t, for example, a
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value of Py = 0.02 is reached at t = 2 · 106 GeV2, which
corresponds to very far asymptotics.

For the cases discussed above, the large value of
|Py| arises questions about the asymptotic trend of elec-
tromagnetic FFs. According to the prescriptions of the
Phragmèn-Lindelöf theorem, Py should vanish.

4 Difference between the absolute values of

F2/F1 in SL and TL regions

We mentioned above that the measured values of the mag-
netic proton FFs are different in TL and SL regions of mo-
mentum transfer, up to t = 18 GeV2, where the TL values
of |GMp|2 exceed by a factor of two the corresponding val-
ues in SL region. These values should approach the same
number at asymptotic values of t. But which number?

Let us analyze the behavior of |F2/F1| in TL re-
gion, using, again, the considered parametrizations. The
parametrization (6) gives |F2/F1|SL = |F2/F1|TL, at any
value of t. Furthermore, this parametrization gives a spe-
cific behavior of the ratio |GE |2/|GM |2 in TL region. One
finds:

|GE |2
|GM |2

=
1 + τ

a2

4m2

1 +
a2

4m2τ

→ τ
a2

4m2
= 0.44τ. (20)

Note, in this respect, that up to now the separation of
the electric and magnetic contributions to the differential
cross-section in the TL region has not been realized, yet.
The analysis of the experimental data is currently based
on two assumptions: either GE = 0 or |GM | = |GE |. The
extracted values for GM according to these prescriptions
differ at most by 20%.

However, eq. (20) suggests another possible relation
between GE and GM , that leads to comparable contri-
butions of the electric and magnetic terms to the cross-
section, independently of the t value. The resulting value
for GM is 10% lower than the value corresponding to
|GM | = |GE |, and still does not compensate the observed
difference of FFs in SL and TL regions.

The parametrization (7) gives the following relation:

R =
|F2/F1|TL
|F2/F1|SL

= 1 +
π2

ln2(t/Λ2)
.

A deviation of R from 1 by 10%(5%) is reached at
√
t '

43(337) GeV.

5 Conclusions

We have analyzed the asymptotic behavior of recently sug-
gested, pQCD-inspired, parametrizations of the ratio of
the Dirac and Pauli FFs, F2/F1. We have based our study
on the requirements given by the Phragmèn-Lindelöf the-
orem, in particular the equality of FFs in SL and TL re-
gions. As FFs are real in SL region and complex in TL

region, this implies that the imaginary part of FFs in TL
region vanishes, as well as the polarization of the emitted
proton, in the annihilation reaction e++e− ↔ p+p̄ (when
the colliding particles are unpolarized).

We have shown that the considered parametrizations
do not satisfy the asymptotic conditions suggested by the
Phragmèn-Lindelöf theorem or they do so only for very
large values of Q2, well beyond the experimentally ac-

cessible range. In particular, the 1/
√

Q2 behavior of this
ratio, which reproduces the recent measurements in the
SL region, is certainly not compatible with an asymp-
totic regime, showing that the presently measurable data
should be better interpreted in the frame of classical nu-
cleon degrees of freedom.

Concerning the double logarithmic parametrization, it
has been pointed out long ago [35], that a suppression to
Sudakov-type contributions could take place.

The dipole-like formulas for FFs do satisfy the
Phragmèn-Lindelöf theorem. But such parametrization
has the following evident problems:

– the threshold condition: GEN (4m2) = GMN (4m2) is
not satisfied,

– the unitarity conditions for all nucleon FFs are
strongly violated, as one should have a branching point
at t = 4m2

π for isovector FFs and t = 9m2
π for isoscalar

FFs,
– the prediction in TL region underestimates the exper-

imental data.

The analytical continuation of nucleon electromagnetic
FFs, presently used to describe the main properties of the
nucleon structure in SL region of the momentum transfer
squared (in some models), results as a rule, in an essential
imaginary part in TL region. Moreover, the relative value
(with respect to the real part) is a very slowly decreasing
function of t. Such behavior, of course, is in agreement
with the Phragmèn-Lindelöf theorem, but the correspond-
ing asymptotic regime corresponds to very large values
of t.

The asymptotic regime defined by the prescriptions of
the considered models and the asymptotic properties de-
rived from the analyticity of form factors act at a different
level. The Phragmèn-Lindelöf theorem defines the asymp-
totic conditions without direct connection with QCD. The
most evident application of the Phragmèn-Lindelöf theo-
rem in physics is the Pomeranchuk theorem —which re-
lates the asymptotic behavior of the total cross-section for
the NN and NN̄ interactions. This is not a QCD regime,
because such theorem applies for t = 0, i.e., to evidently
nonperturbative physics, despite the fact that the Mandel-
stam variable s is very large. So the connection between
QCD asymptotics and asymptotics from the Phragmèn-
Lindelöf theorem, from the point of view of hadron FFs is
nontrivial, as this theorem seems to work for elastic NN
and NN̄ amplitudes in the kinematical region where QCD
does not apply.

We can consider the present results as an indirect indi-
cation of the importance of nonperturbative contributions
to the physics of the nucleon electromagnetic structure.
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